For millennia, the Arctic tundra has helped stabilize global temperatures by storing carbon in the frozen ground. Wildfires have changed that, according to the latest Arctic Report Card released yesterday at the American Geophysical Union (AGU) conference.
Science
NASA’s Artemis II Moon mission has been delayed again to 2026
The 10-day Artemis II mission will send four astronauts to the Moon, including Christina Koch, Reid Wiseman, Victor Glover, and Canadian Jeremy Hansen. The mission won’t include a landing, but it will be the first time astronauts launch aboard NASA’s Space Launch System rocket inside the Orion crew capsule that will orbit the Moon before returning to Earth with a planned splashdown in the Pacific Ocean.
It will follow the uncrewed Artemis I mission that finally launched in November 2022 after years of delays due to technical difficulties and even a few hurricanes. Although Artemis I was a success, investigations into unexpected charring on the Orion capsule’s heat shield, critical to protecting astronauts when re-entering the Earth’s atmosphere, have contributed to the additional delays.
Following extensive analysis, NASA says it has determined that the Orion capsule’s heat shield “did not allow for enough of the gases generated inside a material called Avcoat to escape,” causing some of it to unexpectedly crack and break off during the Artemis I mission, instead of wearing away gradually as it heats up. Despite the charring, temperature sensors indicated the interior of the Orion capsule remained comfortable and safe for astronauts.
For Artemis II, NASA engineers have decided the capsule “can keep the crew safe during the planned mission with changes to Orion’s trajectory as it enters Earth’s atmosphere” and are preparing the capsule using the heat shield already attached. “The updates to our mission plans are a positive step toward ensuring we can safely accomplish our objectives at the Moon and develop the technologies and capabilities needed for crewed Mars missions,” said Catherine Koerner, associate administrator Exploration Systems Development Mission Directorate.
However, for the more ambitious Artemis III mission, the agency says it is “implementing enhancements to how heat shields for crewed returns from lunar landing missions are manufactured” based on what it learned from Artemis I.
Science
NASA thinks it’s figured out why the Mars helicopter crashed
Ahead of a full technical report that’s expected to be released in the next few weeks, engineers from NASA’s Jet Propulsion Laboratory and AeroVironment have revealed what’s believed to be the cause of the Ingenuity Mars Helicopter’s crash on January 18th, 2024. The craft’s vision navigation system, which was designed to track textured features on the surface of Mars, was confused by a featureless stretch of rippled sandy terrain, resulting in incorrect velocity estimates that led to a hard landing.
Relying on remote data, including photographs taken after the flight, the investigators believe that “navigation errors created high horizontal velocities at touchdown,” which most likely resulted in Ingenuity experiencing a “hard impact on the sand ripple’s slope,” causing it to pitch and roll.
NASA’s engineers originally assumed that Ingenuity’s spinning rotor blades were damaged after making contact with the surface of Mars during the crash. They now believe they snapped off because “the rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits.” A part of one of the rotor blades was located about 49 feet away from the craft’s final resting place.
Communications were lost during the crash as a result of excessive vibration in the damaged and unbalanced rotor system that resulted in an excessive power demand. However, despite being permanently grounded, communications were reestablished the next day, and Ingenuity “still beams weather and avionics test data to the Perseverance rover about once a week,” which NASA says “is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.”
Initially designed to perform only up to five experimental flights over the course of a month on Mars, Ingenuity operated for almost three years and accumulated over two hours of flight time across 72 flights.
Science
Biden administration raises tariffs on solar materials from China
Tariffs on solar wafers, polysilicon, and certain tungsten products from China are going to rise dramatically come January 1st, 2025, the Biden administration announced Wednesday. That means higher price tags on key materials needed to make solar panels at a time when solar is the fastest growing source of electricity in the US.
Polysilicon is used to make solar wafers, which are the semiconductors in solar panels. Tungsten — the same material in old-school incandescent lightbulbs — has many uses in electronics because of its high melting point. The metal is also part of supply chains for the aerospace, automotive, defense, medical, and oil and gas industries.
That means higher price tags on key materials needed to make solar panels at a time when solar is the fastest growing source of electricity in the US
It’s the latest instance of the Biden administration hiking up tariffs on goods from China — which dominates solar manufacturing — as part of its plan to build up domestic supply chains for clean energy.
“The tariff increases announced today will further blunt the harmful policies and practices by the People’s Republic of China,” ambassador Katherine Tai said in a statement. “These actions will complement the domestic investments made under the Biden-Harris Administration to promote a clean energy economy, while increasing the resilience of critical supply chains.”
American manufacturers welcomed the changes. “These trade measures will begin to counter the pervasive Chinese government subsidies in solar manufacturing. It is a step in the right direction,” Mike Carr, executive director of the Solar Energy Manufacturers for America (SEMA) Coalition, said in an emailed statement.
President-elect Donald Trump has said he plans to hike tariffs on imported goods from China even more than his predecessor, which is expected to increase prices on everything from cars to electronics.
Science
The tundra keeps burning and it’s transforming the Arctic
Fires, intensified by climate change, release carbon trapped in soil and plants. More frequent infernos have now transformed the tundra into a net source of carbon dioxide emissions. It’s a dramatic shift for the Arctic, and one that will make the planet even hotter.
“Climate change is not bringing about a new normal. Instead, climate change is bringing ongoing and rapid change,” Twila Moon, lead editor of the Arctic Report Card and deputy lead scientist at the National Snow and Ice Data Center, said at the conference yesterday.
“Climate change is not bringing about a new normal.”
The Arctic’s permafrost, which stays frozen year-round, has kept planet-heating carbon sequestered for thousands of years. Northern permafrost has been estimated to hold about twice as much carbon as there is in the atmosphere. Tundra describes the Arctic’s tree-less plains, where shrubs, grasses, and mosses grow and take in carbon dioxide through photosynthesis. Plants eventually release that CO2 back into the atmosphere when they decompose or if they burn. And lucky for us, frigid temperatures slow microbial decomposition in the Arctic, keeping that carbon locked in the soil.
But greenhouse gas emissions from fossil fuels have made our planet a hotter place, and the Arctic has been warming nearly four times as fast as the rest of the planet. As a result, permafrost is thawing — waking up the microbes that break down dead plants and releasing previously trapped greenhouse gases. Permafrost temperatures hit record highs across nearly half of the monitoring stations in Alaska in 2024, according to the report card.
Wildfires are another growing problem since dead vegetation makes for a great fuel source. Blazes quickly release carbon trapped in plants and soil. Wildfires across areas with permafrost in North America have increased since the middle of the 20th century. Fires are more intense, burn across larger areas, and create more carbon pollution.
2023 was the worst year on record in terms of how much of the Arctic burned. A historically bad wildfire season in Canada led to the release of more than 640 million metric tons of carbon dioxide, an amount larger than any country’s annual carbon pollution with the exception of China, the US, and India.
Taking wildfire emissions into account, the Arctic tundra is now releasing more CO2 than it captures. It’s a long-term trend that the researchers expect to continue after crunching data from roughly the past two decades for this report card. The Arctic permafrost region as a whole — which encompasses tundra and forests — has become carbon neutral over the past 20 years, meaning it’s neither absorbing nor releasing excess CO2.
The amount of carbon dioxide now leaking from the tundra is small in comparison to the billions of tons of greenhouse gas emissions human activity sends into the atmosphere each year. But it adds to the many ways life in the Arctic is getting harder. Caribou populations have dropped by 65 percent over the last few decades as global warming transforms the landscape to which they’ve adapted, for example. They’ve been documented eating less on hot days, perhaps because they’re trying to stay cool or avoid mosquitoes. And caribou health has cascading impacts on the local people that rely on the herds for food.
Some species are finding ways to adjust. Ice seals in Alaska, for example, have started to eat different kinds of fish depending on what’s available and seem to be staying healthy. Understanding how the environment is changing, through research like the Arctic Report Card, might similarly help humans adapt. The report was produced by the National Oceanic and Atmospheric Administration (NOAA) working with 97 scientists from 11 different countries.
If not for the vast stores of carbon in the Arctic permafrost, the consequences of climate change would already be much more intense today. And now, the Arctic needs help from other regions of the world that are producing vastly more planet-heating pollution.
“While we can hope that many plants and animals will find pathways to adaptation as ice seals have so far, hope is not a pathway for preparation or risk reduction,” Moon said. “With almost all human produced heat trapping emissions created outside of the Arctic, only the strongest actions to reduce these emissions will allow us to minimize risk and damage as much as possible into the future. This is true for the Arctic and the globe.”
-
Startup Stories1 year ago
Why Millennials, GenZs Are Riding The Investment Tech Wave In India
-
Startup Stories1 year ago
Startups That Caught Our Eyes In September 2023
-
Startup Stories1 year ago
How Raaho Is Using Tech To Transform India’s Fragmented Commercial Trucking
-
Startup Stories1 year ago
Meet The 10 Indian Startup Gems In The Indian Jewellery Industry’s Crown
-
Crptocurrency10 months ago
Lither is Making Crypto Safe, Fun, and Profitable for Everyone!
-
Startup Stories1 year ago
WOW Skin Science’s Blueprint For Breaking Through In The $783 Bn BPC Segment
-
Startup Stories1 year ago
How Volt Money Is Unlocking The Value Of Mutual Funds With Secured Lending
-
E-commerce1 year ago
Top Online Couponing Trends To Watch Out For In 2016